Third-order integrable difference equations generated by a pair of second-order equations
نویسندگان
چکیده
منابع مشابه
On a class of third-order nonlinear difference equations
This paper studies the boundedness character of the positive solutions of the difference equation x(n+1) = A + x(n)^p/(x(n-1)^q*x(n-2)^r), no, where the parameters A, p, q and r are positive numbers.
متن کاملNON-STANDARD FINITE DIFFERENCE METHOD FOR NUMERICAL SOLUTION OF SECOND ORDER LINEAR FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
In this article we have considered a non-standard finite difference method for the solution of second order Fredholm integro differential equation type initial value problems. The non-standard finite difference method and the composite trapezoidal quadrature method is used to transform the Fredholm integro-differential equation into a system of equations. We have also developed a numerical met...
متن کاملNonoscillatory Solutions of Second Order Differential Equations with Integrable Coefficients
The asymptotic behavior of nonoscillatory solutions of the equation x" + a{t)\x\' sgnx = 0, y > 0 , is discussed under the condition that A(t) = limr_00/, a(s)ds exists and A(t) > 0 for all t. For the sublinear case of 0 < y < 1 , the existence of at least one nonoscillatory solution is completely characterized.
متن کاملTHIRD-ORDER AND FOURTH-ORDER ITERATIVE METHODS FREE FROM SECOND DERIVATIVE FOR FINDING MULTIPLE ROOTS OF NONLINEAR EQUATIONS
In this paper, we present two new families of third-order and fourth-order methods for finding multiple roots of nonlinear equations. Each of them requires one evaluation of the function and two of its first derivative per iteration. Several numerical examples are given to illustrate the performance of the presented methods.
متن کاملBehavior of a Competitive System of Second-Order Difference Equations
We study the boundedness and persistence, existence, and uniqueness of positive equilibrium, local and global behavior of positive equilibrium point, and rate of convergence of positive solutions of the following system of rational difference equations: x n+1 = (α 1 + β 1 x(n-1))/(a1 + b1 y n), y(n+1) = (α 2 + β 2 y(n-1))/(a2 + b2 xn), where the parameters α i, β i, a i, and b i for i ∈ {1,2} a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and General
سال: 2006
ISSN: 0305-4470,1361-6447
DOI: 10.1088/0305-4470/39/5/009